Compressive Multispectral Spectrum Sensing for Spectrum Cartography
نویسندگان
چکیده
In the process of spectrum sensing applied to wireless communications, it is possible to build interference maps based on acquired power spectral values. This allows the characterization of spectral occupation, which is crucial to take management spectrum decisions. However, the amount of information both in the space and frequency domains that needs to be processed generates an enormous amount of data with high transmission delays and high memory requirements. Meanwhile, compressive sensing is a technique that allows the reconstruction of sparse or compressible signals using fewer samples than those required by the Nyquist criterion. This paper presents a new model that uses compressed multispectral sampling for spectrum sensing. The aim is to reduce the number of data required for the storage and the subsequent construction of power spectral maps with geo-referenced information in different frequency bands. This model is based on architectures that use compressive sensing to analyze multispectral images. The operation of a centralized manager is presented in order to select the power data of different sensors by binary patterns. These sensors are located in different geographical positions. The centralized manager reconstructs a data cube with the transmitted power and frequency of operation of all the sensors based on the samples taken and applying multispectral sensing techniques. The results show that this multispectral data cube can be built with 50% of the samples generated by the devices, and the spectrum cartography information can be stored using only 6.25% of the original data.
منابع مشابه
Investigation of Always Present and Spectrum Sensing based Incumbent Emulators
Cognitive radio (CR) technology has been suggested for effective use of spectral resources. Spectrum sensing is one of the main operations of CR users to identify the vacant frequency bands. Cooperative spectrum sensing (CSS) is used to increase the performance of CR networks by providing spatial diversity. The accuracy of spectrum sensing is the most important challenge in the CSS process sinc...
متن کاملEfficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation
Combining spectral imaging with compressive sensing (CS) enables efficient data acquisition by fully utilizing the intrinsic redundancies in natural images. Current compressive multispectral imagers, which are mostly based on array sensors (e.g, CCD or CMOS), suffer from limited spectral range and relatively low photon efficiency. To address these issues, this paper reports a multispectral imag...
متن کاملCompressive Spectrum Sensing for Cognitive Radio Networks
............................................................................................................................... 3 RÉSUME .................................................................................................................................... 5 ACKNOWLEDGEMENT .......................................................................................................... 7 ...
متن کاملTotal Variation Minimization Based Compressive Wideband Spectrum Sensing for Cognitive Radios
Wideband spectrum sensing is a critical component of a functioning cognitive radio system. Its major challenge is the too high sampling rate requirement. Compressive sensing (CS) promises to be able to deal with it. Nearly all the current CS based compressive wideband spectrum sensing methods exploit only the frequency sparsity to perform. Motivated by the achievement of a fast and robust detec...
متن کاملSpectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation
Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...
متن کامل